产品使用 文档

目 录

综合介绍 ✓ 功能特性 ✓ 特性参数 ✓ 工业标准 产品说明 4 ✓ 结构与连接 6 ✔ 产品注意事项 通讯协议 ✔ 协议结构 8 ✓ 常规控制指令 ✓ 电量查询指令 15 MQTT 客户端 ✔ 协议指令 21 27 ✓ 上位机软件 34 ✓ 远端页面 36

✔ 小程序

录

综合介绍:功能特性

- 前面板提供1个液晶屏,可查看回路参数:
- ▶ 提供8个电源开关通道,8路通道开关状态可由面板显示;
- ▶ 单通道的最大电流为 10A, 总输入电流容量为 38A;
- ▶ 可通过面板一键(ON/OFF)开关,时序开启/关闭 1-8 通道,实现时序功能;
- ▶ 可通过软件方式,锁闭和解锁面板按键:
- ▶ 提供 RS232 输入接口,可连接电脑和中控系统:
- ▶ 提供 RJ45 网络输入接口,可连接局域网或外接广域网:
- ▶ 提供相邻端口互锁功能,可用于控制投影升降幕、升降架以及电动窗帘等设备升降和开闭;
- ▶ 提供延时操作功能,延时时间可长达 15 小时;
- ➤ 19 寸标准机柜 1U 设计。

综合介绍: 特性参数

输入电源 (Control Supply)

110V $^{\sim}$ 230V 50/60Hz

输出通道数 (Output Number)

8路

电源输入接口(Supply Terminals)

火线 (Line), 零线 (Neutral), 地线 (Earth)

3 x 4mm2 三芯同轴线

电源输出接口(Output Terminals)

8路10A多功能插座

通道负载输出(Outputs)

单通道最大输出负载 10A

整机设备最大输出负载 38A

开关器件(Switching Device)

继电器 30A/250V AC nom

控制输入(Control Inputs)

1路RJ45网口

1路RS232串口

使用控制界面(User Controls)

1个时序按钮开关

1个时序开关LED指示灯

8个单通道按钮开关

8个通道状态LED指示灯

使用环境(Operating Environment)

温度范围 -5℃ 至 +40℃ 湿度范围 0至 90% RH

尺寸 (Dimensions)

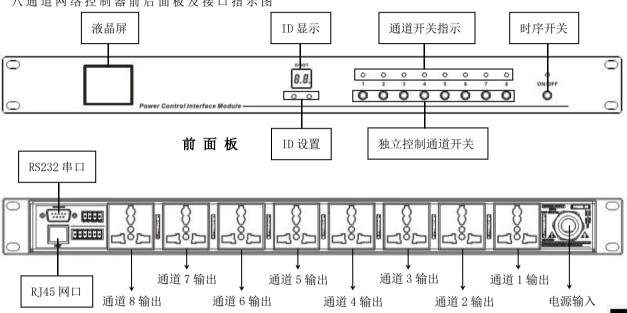
高x宽x深

H 45mm x W 483mm x D 183mm

重量 (Weight)

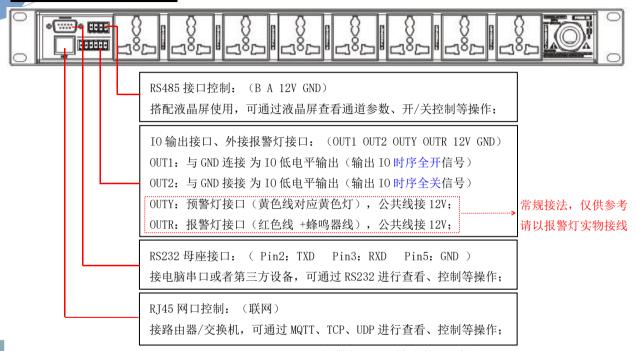
净重 4.1kg

综合介绍:工业标准


IPCS 系列电源控制器,就其整体设计,包括线路板,电子元件等,并经过耐久性,高温环境,震荡,过载等多项实验室严格测试,完全符合 CE 和 3C 工业电子设备要求,也符合工业电路安装安全规范。

产品使用 文档

产品说明:结构与联接


八通道网络控制器前后面板及接口指示图

后面板

产品使用 文档 🖫

产品说明: 结构与联接

RS232、RJ45、RS485、报警灯、IO 输出接口说明

产品说明:注意事项

为确保设备可靠使用及人员的安全,请在安装、使用和维护时请守以下事项:

- 1、为确保操作安全,应确保电源接地良好,务必将随机提供的电源接入线接入地线,确保设备的输入电源 AC220V-50/60Hz 的交流电;
- 2、为防止火灾或漏电不要将设备置于过冷或过热的地方;
- 3、设备受雨或受朝, 阴雨朝湿天气或长时间不使用时, 请断开设备总电源;
- 4、设备不得遭受水滴或水溅,设备上不能放置诸如花屏一类的装液态物品;
- 5、控制设备的电源在工作时会发热,因此要保持工作环境的良好通风以免温度过高而损坏机器;
- 6、非专业人士未经许可请不要试图拆开设备机箱,不要私自维护以免发生意外事故或加重设备的 损坏程度;
- 7、安装后必须按照设备参数接入负载;
- 8、禁止超过设备的额定功率。

产品使用 文档

产品说明: 通讯协议

串行端口通讯格式:

波特率: 9600bps; 数据位: 8; 停止位: 1; 校验方式: 无校验;

TCP/UDP 通讯格式:

默认 IP 地址: 192.168.1.100; TCP 端口: 8001; UDP 端口: 8002;

MQTT 客户端控制: (设置或者获取服务器信息及 MQTT 主题)

默认发布主题: /device/NO810M/W/IMEI/sub

订阅主题:/device/NO810M/W/IMEI/pub

遗嘱主题: /device/NO810M/W/IMEI/will

IMEI: 通过指令或者上位机软件获取

1. 设置ID: (FE为广播ID) (新)

起始符	固定值	设备 ID	CMD 命令	DATA	CKS校验
CA	20	FE	10	01 + ID	AC

发送: CA 20 FE 10 01 01 AC 反馈: CA BO ID 10 01 01 AC

产品使用 文档

2. 单通道开/关操作指令:

起始位	命令1	设备 ID	命令2	数据长度	通道字节	状态字节	结東位
CA	20	FE	18	02	01-08	00/01/02	AC

端口: 是指模块的开关通道(16进制显示),8路端口;

举例:设备 01 通道 2 关: CA 20 01 18 02 02 00 AC

反馈格式: CA BO 01 18 02 02 00 AC

反馈解析: 01 是设备 ID, 02 是通道, 00 是通道状态(01 打开, 00 关闭);

3. 时序全开/全关指令:

起始符	命令1	设备 ID	命令2	数据长度	通道有效选择	通道状态操作	参数字节	CKS 校验
					字节	字节		
CA	20	FE	19	03	FF	FF	01/02	AC

通道: 是指设备的开关通道(16 讲制显示), 共8路通道:

举例: 1. 设备 01 通道全开: CA 20 01 19 03 FF FF 01 AC

反馈格式: CA BO 01 19 01 FF AC

反馈解析: 01 是设备 ID, 01 是字节长度, FF 是通道状态字节(全开):

2. 设备 01 通道全关: CA 20 01 19 03 FF 00 02 AC

反馈格式: CA BO 01 19 01 00 AC

反馈解析: 01 是设备 ID, 01 是字节长度, 00 是通道状态字节(全关);

产品使用

文档 4. 多通道开/关操作指令(可设置延时操作)

起始符	命令1	设备 ID	命令2		DATA				
CA	20	FE	19	03	通道有效字节	通道状态字节	延时参数字节	AC	

通道有效字节:

用以指明设备的哪些通道进行操作,其 0 位对应通道 1,1 位对应通道 2 ······7 位对应通道 8,位值为 1 时表示对应通道将根据通道状态操作字节的内容进行操作:为 0 时则表示对应通道保持原有状态。

注:转换为二进制确定你要操作的通道;如 7F 转为 0111 1111 代表 1-7 通道。

通道状态字节:

用以指明要达到的通道状态,其0位对应通道1,1位对应通道2……7位对应通道8,位值为1时表示开启对应的通道(继电器闭合),为0时则表示关闭对应的通道(继电器释放)。

注:转换为二进制确定通道开和关的状态:如 04 转换为 0100 表示开通道 3。

延时参数字节:

延时参数仅用来控制多久以后执行这个开关动作。

注: 多通道开关控制命令,无时序开启的概念,延时后它会控制通道快速同时启动或关闭。

通讯协议:控制指令

延时参数字节:

用以指明此指令的通道操作的延时时间,其延时时间请参考下面表格: 秒单位定时:

参数	延时	参数	延时	参数	延时	参数	延时	参数	延时	参数	延时
值	时间	值	时间	值	时间	值	时间	值	时间	值	时间
00	立即	4A	10 秒	54	20 秒	5E	30 秒	68	40 秒	72	50 秒
41	1秒	4B	11 秒	55	21 秒	5F	31 秒	69	41 秒	73	51 秒
42	2秒	4C	12 秒	56	22 秒	60	32 秒	6A	42 秒	74	52 秒
43	3 秒	4D	13 秒	57	23 秒	61	33 秒	6B	43 秒	75	53 秒
44	4秒	4E	14 秒	58	24 秒	62	34 秒	6C	44 秒	76	54 秒
45	5秒	4F	15 秒	59	25 秒	63	35 秒	6D	45 秒	77	55 秒
46	6秒	50	16 秒	5A	26 秒	64	36 秒	6E	46 秒	78	56 秒
47	7秒	51	17 秒	5B	27 秒	65	37 秒	6F	47 秒	79	57 秒
48	8秒	52	18 秒	5C	28 秒	66	38 秒	70	48 秒	7A	58 秒
49	9秒	53	19 秒	5D	29 秒	67	39 秒	71	49 秒	7B	59 秒

产品使用

文档 通讯协议: 控制指令

分钟单位定时:

参数	延时	参数	延时	参数	延时	参数	延时	参数	延时	参数	延时
值	时间	值	时间	值	时间	值	时间	值	时间	值	时间
80	立即	8A	10 分	94	20 分	9E	30 分	A8	40 分	B2	50分
81	1分	8B	11 分	95	21 分	9F	31 分	A9	41 分	В3	51分
82	2分	8C	12 分	96	22 分	AO	32 分	AA	42 分	B4	52 分
83	3分	8D	13 分	97	23 分	A1	33 分	AB	43 分	В5	53 分
84	4分	8E	14 分	98	24 分	A2	34 分	AC	44 分	В6	54 分
85	5分	8F	15 分	99	25 分	A3	35 分	AD	45 分	В7	55 分
86	6分	90	16分	9A	26 分	A4	36 分	AE	46 分	В8	56分
87	7分	91	17 分	9B	27 分	A5	37 分	AF	47 分	В9	57分
88	8分	92	18 分	9C	28 分	A6	38 分	В0	48 分	BA	58 分
89	9分	93	19 分	9D	29 分	A7	39 分	B1	49 分	BB	59 分

通讯协议:控制指令

小时单位定时:

参	延时	参	延时	参	延时	参	延时	参	延时
数	时间	数	时间	数	时间	数	时间	数	时间
值		值		值		值		值	
C1	1小时	C4	4小时	C7	7小时	CA	10 小时	CD	13 小时
C2	2小时	C5	5 小 时	C8	8小时	СВ	11 小时	CE	14 小 时
СЗ	3小时	C6	6小时	С9	9小时	CC	12 小时	CF	15 小 时

举例:

执行指令] 容	
通道 1, 3, 5 开, 2, 4 关。立即执行	A 20 FE 19 03 1F 15 00 AC	C
通道 1-7 开启,定时 15 秒后执行	A 20 FE 19 03 7F 7F 4F AC	C
通道 1-8 同时关闭,定时 10 分钟后执行	A 20 FE 19 03 <mark>FF 00 8A</mark> AC	C

备注:多通道开/关操作指令中有通道有效字节及通道状态字节说明,无反馈;

产品使用

文档 5. 通道状态查询:

起始符	命令1	设备 ID	命令2	数据	CKS 校验
CA	20	FE(设备 ID 或通信用特殊通道)	20	01 + 01	AC

例如: 查询设备 ID01 的通道状态指令如下: CA 20 FE 20 02 01-08/FF(通道) 01 AC 设备 ID01 的 1-4 通道开启反馈如下: CA BO 01 20 02 01-08/FF(通道) 01 AC

6. 上电状态设置

断电前状态设置: (新)

起始符	命令1	设备 ID	命令2	总长度	地址1	地址 2	长度	通道状态字节	CKS 校验
CA	20	FE	11	04	00	15	01	FF	AC

发送: CA 20 FE 11 04 00 15 01 FF AC

反馈: CA BO ID 11 04 00 15 01 FF AC

断电自定义设置: (新)

起始符	命令1	设备 ID	命令 2	总长度	地址 1	地址 2	长度	通道状态字节	CKS 校验
CA	20	FE	12	04	00	11	01	FF	AC

举例:设置设备 02 通道 1, 2, 3, 4 每次上电开启指令:

1、首先发送解除恢复断电前状态指令(这里其实就是把上电状态的使能位设为自定义的状态):

发送: CA 20 FE 11 04 00 15 01 00 AC

反馈: CA BO 02 11 04 00 15 01 00 AC

2、然后发送设备自定义状态指令:

发送: CA 20 FE 12 04 00 11 01 0F AC 反馈: CA BO 02 12 04 00 11 01 0F AC

7. 通道互锁设置: (新)

起始符	命令1	设备 ID	命令2	总长度	地址1	地址 2	长度	通道状态	CKS 校验
CA	20	FE	13	04	00	1F	01	FF	AC

举例: 设备 ID01 通道 1-2, 3-4, 5-6, 7-8 互锁指令:

发送: CA 20 FE 13 04 00 1F 01 0F AC

反馈: CA BO 01 13 04 00 1F 01 0F AC

通道状态: 00 为全部解锁 0F 为全部互锁 01 为 1-2 互锁 02 为 3-4 互锁

04 为 5-6 互锁 08 为 7-8 互锁

8. 设备面板锁设置: (新)

起始符	命令1	设备 ID	命令2	数据长度	锁状态	CKS 校验
CA	20	FE	15	01	00 / 01	AC

发送: CA 20 FE 15 01 00/01 AC

反馈: CA BO ID 15 01 00/01 AC

锁状态: 00 为锁面板, 01 为解锁面板;

产品使用

文档 9. 手动控制通道开/关反馈:

反馈: CA BO ID 20 02 01 00 AC

CA BO ID 1B 13 01 01 1A 00 00 00 00 00 00 00 00 00 00 00 12 C1 15 B5 AC

说明:通道(01-08)、通道状态(1byte)、温度(℃)(1byte)、电流(0.01*A)(2byte)、

电压(0.1*V)(2byte)、功率(W)(4byte)、本轮电量(0.01*度)(4byte)、设备序列号(唯一性)

10. 查询平均电流(精度系数0.01,单位: A)

起始符	命令1	设备 ID	命令2	数据长度	通道	保留位	CKS 校验
CA	20	FE	41	02	01-08	01	AC

发送指令: CA 20 FE 41 02 03 01 AC

反馈:

起始符	命令1	设备 ID	命令	数据长度	通道	电流	CKS 校验
CA	В0	FE	41	03	01-08	01 34	AC

01 34 为十六进制显示,转换成十进制再乘以精度系数 0.01 (3.08A)

11. 查询平均电压(精度系数0.1,单位:V)

起始符	命令1	设备 ID	命令2	数据长度	通道	保留位	CKS 校验
CA	20	FE	43	02	01-08	01	AC

发送指令: CA 20 FE 43 02 03 01 AC

产品使用 文档

反馈:

起始符	命令1	设备 ID	命令2	数据长度	通道	电压	CKS 校验
CA	В0	FE	43	03	01-08	08 C0	AC

08 C0 为十六进制显示,转换成十进制再乘以精度系数 0.1 (224V)

12. 查询有功功率 (精度系数1,单位: W)

起始符	命令1	设备 ID	命令2	数据长度	通道	保留位	CKS 校验
CA	20	FE	44	02	01-08	01	AC

发送指令: CA 20 FE 44 02 03 01 AC

反馈:

起始符	命令1	设备 ID	命令2	数据长度	通道	功率	CKS 校验
CA	В0	FE	44	03	01-08	01 F4	AC

01 F4 为十六进制显示,转换成十进制再乘以精度系数 1 (500W)

13. 查看历史电量(精度系数0.01,单位:度)超过60000度清零后重新记录(隔5分钟上传数据)

起始符	命令1	设备 ID	命令2	数据长度	通道	CKS 校验
CA	20	FE	45	01	01-08	AC

发送指令: CA 20 FE 45 01 03 AC

产品使用 文档 反馈:

起始符	命令1	设备 ID	命令2	数据长度	通道	电量	序列号	CKS 校验
CA	В0	FE	45	09	01-08	12 34 56 78	XX XX XX XX	AC

12 34 56 为十六进制显示,转换成十进制再乘以精度系数 0.01 (11930.46 度)

14. 查询当前温度(单位: °C)

起始符	命令1	设备 ID	命令2	数据长度	通道	CKS 校验
CA	20	FE	60	01	01-08	AC

发送指令: CA 20 FE 60 01 01 AC

反馈:

起始符	命令1	设备 ID	命令2	数据长度	通道	温度	CKS 校验
CA	В0	FE	60	02	01-08	1A	AC

1A 为十六进制显示, 转换成十进制(26 度)

15. 查询单个通道参数

起始符	命令1	设备 ID	命令2	数据长度	通道	CKS 校验
CA	20	FE	1B	01	01 - 08	AC

查询通道 1 指令: CA 20 FE 1B 01 01 AC

反馈: CA BO 01 1B 13 01 01 1A 00 00 00 00 00 00 00 00 00 00 00 01 12 C1 15 B5 AC

查询通道 2 指令: CA 20 FE 1B 01 02 AC

反馈: CA BO 01 1B 13 02 01 1A 00 00 00 00 00 00 00 00 00 00 00 00 12 C1 15 B5 AC

说明:通道(01-08)、通道状态(lbyte)、温度(℃)(lbyte)、电流(0.01*A)(2byte)、 电压(0.1*V)

(2byte)、功率(W)(4byte)、历史电量(0.01*度)(4byte)、设备序列号(唯一性)

16. 查询所有通道参数

起始符	命令1	设备 ID	命令2	数据长度	通道	CKS 校验
CA	20	FE	1B	01	FF	AC

指令: CA 20 FE 1B 01 FF AC

↓按顺序反馈8路通道参数

反馈: CA BO FE 1B 13 01 01 1A 00 00 00 00 00 00 00 00 00 00 00 12 C1 15 B5 AC

CA BO FE 1B 13 02 01 1A 00 00 00 00 00 00 00 00 00 00 00 12 C1 15 B5 AC

. . .

CA BO FE 1B 13 08 01 1A 00 00 00 00 00 00 00 00 00 00 00 12 C1 15 B5 AC

说明:通道(01-08)、通道状态(1byte)、温度(℃)(1byte)、电流(0.01*A)(2byte)、电压(0.1*V)

(2byte)、功率(W)(4byte)、历史电量(0.01*度)(4byte)、设备序列号(唯一性)

产品使用

文档 17. 保护功能一键设置(含单路、所有通道设置)

发送: CA 20 FE E1 12 <mark>01 1F</mark> 00 32 00 28 00 5A 00 46 00 00 00 BE 01 09 00 F9 AC

备注: 单通道查询: 通道设置 01-08, 所有通道查询: 通道设置 FF;

反馈: CA 20 FE E1 12 01 1F 00 32 00 28 00 5A 00 46 00 00 00 BE 01 09 00 F9 AC

说明:通道(01-08)、过流保护开关、过温保护开关、欠流保护开关、欠压保护开关、过压保护开关、过流动作

报警值(50A)、过流报警值(40A)、过温动作报警值(90°C)、过温报警值(70°C)、欠流报警值、欠压报警

值(190V)、过压动作报警值(265V)、过压报警值(249V)

18. 保护功能一键查询

起始符	命令1	设备 ID	命令2	数据长度	通道	CKS 校验
CA	20	FE	EO	01	01-08 / FF	AC

发送: CA 20 FE EO 01 01 AC

备注: 单通道查询: 通道反馈 01-08, 所有通道查询: 按顺序反馈所有通道参数:

反馈: CA 20 FE EO 12 01 1F 00 32 00 28 00 5A 00 46 00 00 00 BE 01 09 00 F9 AC

说明:通道(01-08)、过流保护开关、过温保护开关、欠流保护开关、欠压保护开关、过压保护开关、过流动作报

警信(50A)、过流报警信(40A)、过温动作报警信(90°C)、过温报警信(70°C)、欠流报警值、欠压报警值

(190V)、过压动作报警值(265V)、过压报警值(249V)

产品使用 文档

详细说明:

CA BO 01 EO 12 FF XX1 XX2 XX3 XX4 XX5 XX6 XX7 XX8 XX9 XX10 XX11 XX12 XX13 XX14 XX15 XX16 XX17 AC

解析: XX1: 低 5 位有效 bit4: 过流保护, bit3: 过温保护, bit2: 欠流保护, bit1: 欠压保护, bit0: 过压保护

XX2 XX3: 过流动作报警值

XX4 XX5: 过流报警值

XX6 XX7: 过温动作报警值

XX8 XX9: 过温报警值

XX10 XX11: 欠流报警值

XX12 XX13: 欠压报警值

XX14 XX15: 过压动作报警值

XX16 XX17: 过压报警值

19.30s 重复刷新数据使能

发送: CA 20 FE DD 01 00/01 AC

反馈: CA BO FE DD 01 00/01 AC

备注: 00 为禁止, 01 为使能

20

产品使用 文档

反馈: CA BO ID 2B 03 01 XX XX AC

说明: 01: 通道(01-08)

XX XX 解析如下:

[bit15]: 过温动作告警 (二进制 1000 0000 0000 0000) 80 00

[bit14]: 过温告警 (二进制 0100 0000 0000 0000) 40 00

[bit9]: 过流告警 (二进制 0000 0010 0000 0000) 02 00

[bit4]: 过压动作告警(二进制 0000 0000 0001 0000) 00 10

[bit3]: 过流动作告警 (二进制 0000 0000 0000 1000) 00 08

[bit2]: 欠压告警 (二进制 0000 0000 0000 0100) 00 04

[bit1]: 过压告警 (二进制 0000 0000 0000 0010) 00 02

[bit0]: 欠流告警 (二进制 0000 0000 0000 0001) 00 01

21. 设置报警信息发送模式(地址: 0x00A1) (新)

命	令 1	设备 ID	命令2	数据长度	发送模式	CKS 校验
	20	FE	22	01	00 / 01/ 02	AC

发送: CA 20 FE 22 01 00/01/02 AC

反馈: CA BO ID 22 01 00/01/02 AC

说明: 0 为不发送, 1 为发送一次, 2 为循环发送

22. 设置报警信息发送类型(地址 0x00A2) (新)

产品使用 文档

起始符	命令1	设备 ID	命令2	数据长度	发送类型	CKS 校验
CA	20	FE	23	01	01-0F	AC

发送: CA 20 FE 23 01 01-0F AC 反馈: CA BO ID 23 01 01-0F AC

解析: Bit3:USART BIT2:UDP BIT1:TCP BIT0:MQTT

23. 设置报警信息反馈刷新频率(地址: 0x00A3-0x00A4) (新)

起始符	命令1	设备 ID	命令2	数据长度	Datal (时间)	Data2 (时间)	CKS 校验
CA	20	FE	25	02	00	1E	AC

发送: CA 20 FE 25 02 00 1E AC 反馈: CA BO ID 25 02 00 1E AC

24. 设置数据刷新频率(地址: 0x00A5-0x00A6) (新)

起始符	命令1	设备 ID	命令2	数据长度	Datal (时间)	Data2 (时间)	CKS 校验
CA	20	FE	26	02	00	1E	AC

发送: CA 20 FE 26 02 00 1E AC 反馈: CA BO ID 26 02 00 1E AC

25. 设置预警报警灯输出类型(地址: 0x00A7) (新)

产品使用 文档 「

起始符	命令1	设备 ID	命令2	数据长度	设置模式	CKS 校验
CA	20	FE	27	01	00/01	AC

发送: CA 20 FE 27 01 00/01 AC

反馈: CA BO ID 27 01 00/01 AC //00 表示 1s 输出, 01 表示持续输出

26. 接收后端 2B 指令 (新)

起始符	命令1	设备 ID	命令2	数据长度	通道	有效数据	CKS 校验
CA	20	FE	2B	02	01	02	AC

反馈: CA BO ID 2B 03 01 XX XX AC (01 为通道,具体解析查看第 19 条)

发送: CA 20 FE 2B 02 01 02 AC (01 为上面反馈通道)

反馈:无

解析:设备在报警循环发送模式下收到此指令,则不在往 MQTT 发送相同通道的相同报警信息,若无接收到此指令则一直循环发送

27. 重置报警 (新)

起始符	命令1	设备 ID	命令2	数据长度	通道	有效数据	CKS 校验
CA	20	FE	2B	02	01	02	AC

发送: CA <mark>20</mark> FE 30 02 01 01 AC (01 为通道)

反馈: CA <mark>BO</mark> ID 30 02 01 01 AC

23

产品使用 文档

解析: 在报警恢复正常后, 需要发送此条指令解除

28. 查询报警次数 (新)

起始符	命令1	设备 ID	命令2	数据长度	通道	CKS 校验
CA	20	FE	31	01	01	AC

发送: CA <mark>20</mark> FE 31 01 01 AC (01 为通道,总共 01[~]08 通道,若为 FF 则查询 1-8 通道)

反馈: CA BO ID 31 15 01 00 01 00 02 00 03 00 04 00 05 00 06 00 07 00 08 xx1 xx2 xx3 xx4 AC

解析: 01: 为通道, 总共是 1-8

00 01: 过温预警次数

00 02: 过温动作报警次数

00 03: 过流预警次数

00 04: 过流动作报警次数

00 05: 欠流预警次数

00 06: 过压预警次数

00 07: 过压动作报警次数

00 08: 欠压预警次数

xx1 xx2 xx3 xx4 : 总次数(过温预警次数+过温动作报警次数+过流预警次数+过流动作报警次数+欠流预警

次数+过压预警次数+过压动作报警次数+欠压预警次数)

29. 控制蜂鸣器响(新)

产品使用 文档 「

 起始符
 命令 1
 设备 ID
 命令 2
 数据长度
 有效数据
 CKS 校验

 CA
 20
 FE
 2B
 01
 00/01
 AC

发送: CA 20 FE 29 01 00/01 AC 反馈: CA BO TD 29 01 00/01 AC

解析: 00 表示蜂鸣器不响, 01 表示蜂鸣器响

30. 查询设备系列号: (新)

起始符	固定值	设备 ID	CMD 命令	DATA	CKS 校验
CA	20	FE	EE	01 + 01	AC

发送: CA 20 FE EE 01 01 AC

反馈: CA BO ID EE 05 02 yy yy yy AC

31. 版本查询:

起始符	固定值	设备 ID	CMD 命令	DATA	CKS 校验
CA	20	FE	BB	01 + 01	AC

发送指令: CA 20 FE BB 01 01 AC

反馈格式: NO810M V1.3 + 日期(字节显示)

新增设置操作指令:

25

产品使用 文档

说明,原有设置方式保留不变,新增指令是为了兼容新版设置指令方式和方便反馈处理。

MQTT 客户端

1. 服务器: eastcato. co 端口: 1883

账 号:IMEI 密码: 系统生成(可修改,确保安全,谨慎保管二维码贴纸)

2. 设置或者获取服务器信息及 MQTT 主题

发布主题: /device/NO810M/W/IMEI/sub 订阅主题: /device/NO810M/W/IMEI/pub

遗嘱主题: /device/NO810M/W/IMEI/will

3. 读取 IMEI 指令: (可用上位机软件直接读取)

起始符	命令1	设备 ID	命令2	长度	起始地址1	起始地址 2	数据长度	CKS 校验
CA	20	FE	СВ	03	00	F1	0C	AC

发送指令: CA 20 FE CB 03 00 F1 0C AC

反馈:

起始符	命令1	设备 ID	数据长度	数据内容	CKS 校验
CA	20	FE	OC	30 30 62 65 38 62 63 31 31 35 62 35	AC

备注: IMEI (30 30 62 65 38 62 63 31 31 35 62 35) 用字节显示为 (00be8bc115b5)

上位机软件

产品使用[`] 文档

·网络设置:搜索设备→选择设备后连接设备(可选择TCP/UDP/串口连接);


27

2. 参数设置:可进行 ID 修改、单控/全开/全关、上电状态设置、多端口延时、互锁设置;

产品使用 文档

3. 参数设置(服务器)

28

4. 报警设置(单通道报警参数设置)

5. 全通道设置(信息推送等设置)

6. 控制面板 (可以控制、手动刷新、显示所有通道数据)

32

7. 重置密码(进入远端页面可以修改密码,请保存原始密码)

33

远端页面

1. 远端页面登录地址: http://olct.eastcato.co/n0810m/#/login

N0810M远端登录

账号:

设备MAC

产品使用 文档

账号、	密码请	按附带二	维码输入
如下图	用示:	↓	
		国被数	经交回
		75423	330 N
		P. Table	
		4666	er an
			MAN.
		国金统	X.25
		N0810M 远	端页面
		账 号: 密 码:	

2. 远端页面(包含:控制、数据显示、报警设置、功率/历史电量图形显示、手动刷新等)

手机小程序

1. 扫码关注公众号→点击控制设备→进入区域页面

36

2. 新增区域→添加设备(扫码/手动输入)→控制页面(主页,设备,智能→定时,场景,我的)

3. 我的(区域管理→对应区域→区域详情→邀请→权限分配)

į		
1!	5:01 134 00 454 1	₹ 7 2)
	〈 │ 俞 选择分享权限 •••	0
	等级	
	管理员	0
	普通用户	•
	权限	
	自动化、场景(查看、编辑、新增)	
	自动化、场景(查看、执行)	
	楼层、房间、设备(修改信息)	

备注:设备在持续更新中,有任何疑问或者建议请联系技术,感谢使用!